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SUMMARY

A complete boundary integral formulation for incompressible Navier–Stokes equations with time
discretization by operator splitting is developed using the fundamental solutions of the Helmholtz
operator equation with different order. The numerical results for the lift and the drag hysteresis
associated with a NACA0012 aerofoil oscillating in pitch show good agreement with available experimen-
tal data. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A complete boundary integral formulation for inviscid flows governed by non-linear equations
was developed previously [1] using the fundamental solutions of the Laplacian operator
equation with different order. In this paper, the method presented in Reference [1] is extended
further and a complete boundary integral formulation for incompressibe Navier–Stokes
equations with time discretization by operator splitting is developed, using the fundamental
solutions of the Helmholtz operator equation with different order. The numerical results for
the lift and drag hysteresis associated with a NACA0012 aerofoil oscillating in pitch show
good agreement with the available experimental data. The boundary integral formulation
reduces the dimensionality of problems to be solved and the computational mesh to be
generated is needed only on the boundaries of the domain. Thus, the required computer
storage and computing time will be greatly reduced. Hence, it is an efficient method for solving
Navier–Stokes equations.

2. THEORETICAL BASES

The non-dimensional incompressible Navier–Stokes equation are
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where u={ui} is the flow velocity, p is the pressure and Re is the Reynold’s number.
For simplicity, only Dirichlet conditions are considered, i.e.

u=g on G, G=(V,

where 	 G g ·n dG=0, n is the unit vector of the outward normal at G. An initial condition must
also be added, u(x, 0)=u0. Using time discretization by operator splitting, the various
operators occurring in the above governing equations are decoupled and the following
Peaceman–Rachford schemes are obtained. For time step n]0, assuming that un is known,
un+1/2, pn+1/2 and un+1 are computed by
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where Dt is time interval.
Note that a linear variant of Equation (3) is obtained by substituting the linear term

(un+1/2 ·9)un+1/2 to (un+1 ·9)un+1 in Equation (3) and un+1 can be obtained by solving this
linear variant Equation (3) iteratively. Under this condition, both Equation (2) and (3) are
close to generalized Stokes problem as follows:!au−92u+Re9p= f,

9 ·u=0,
(4)

with a=Re/Dt, f= (Re/Dt)un−Re(un ·D)un. Hence, developing a complete boundary integral
formulation for incompressible Navier–Stokes equations is now reduced to developing a
complete boundary integral formulation for generalized Stokes problems.

Equation (4) can be solved using the conjugate gradient algorithm [2]. At each time step of
iteration, p can be solved iteratively using the Laplace equation or Poisson equation, as shown
in Reference [2], with the Dirichlet boundary condition prescribed by the well-known
boundary integral method. A series of equations are then obtained:!au−92u= f−Re9p=F, in V,

u=ug, on G.
(5)

Multiplying Equation (5) with the fundamental solution H0 of the Helmholtz operator
equation with zero-order and then integrating it with respect to V gives&

V
(au−92u)H0 dV=

&
V

FH0 dV, (6)

with (a−92)H0=d(r). According to the Green theorem and the integrating property of
impulse function d, Equation (6) can be written as
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For a smooth boundary, c=1/2. In order to transform the domain integral in Equation (7)
into a series of boundary integrals, two new functions, A0 and H1, are introduced, with A0=F,
(k2−92)H1−H0=0, k=a1/2. Thus, the domain integral in Equation (7) can be expressed as&
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where °= (k2−92). Similarly, the domain integral in Equation (8) can be rewritten as&
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where A1=°A0, °H2−H1=0. The procedure can be generalized by introducing two
sequence of functions defined by the recurrence formulae

Aj+1=°Aj, °Hj+1=Hj, j=0, 1, 2,. . .

Thus the domain integral 	V FH0 dV can be expressed as the summations of infinite boundary
integrals, i.e.

Figure 1. Lift and drag hysteresis for NACA0012 aerofoil oscillating in pitch.
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More generally, the jth order fundamental solution Hj satisfies

°Hj=Hj−1, j=1, 2, . . . ,

and can be expressed as

Hj=Bj(kr)Kj(kr), B0=1/2p, H0=B0K0(kr),

where Bj=Bj−1/2jk2 (for j\0) and Kj(x) represent the second type of modified Bessel
function of jth order. Finally, substituting Equation (10) into (7), a complete boundary integral
formulation for Equation (5) is obtained:
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Notice that the introduction of factor jk2 into the denominator of expression Bj guarantees the
rapid convergence of Equation (11), especially for the flow with large Reynold’s number.

3. NUMERICAL RESULTS

Figure 1 shows the lift and the drag hysteresis associated with a NACA0012 aerofoil oscillating
in pitch about a pitch axis located on the aerofoil centerline at the quarter chord measured
from the leading edge. The incidence angle for the oscillating aerofoil is varied with a=5°+
20° sin(vt), at a reduced frequency vR=0.1. The computing results show good agreement
with available experimental data [3]. For large Reynold’s number Re and small time interval
Dt, the value of k=
a=
Re/Dt will be large enough to reduce the value of Hj greatly as j
increases. In the present example (Re=106, Dt=0.1), the difference of results given by j=1
and 2 already cannot be distinguished.
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